
Write-Ups Retinal System - USB Drive Eyes
Infection
Author : Choupisson

Humm quite a big problem. Let's fight against M. Wellington's eye infection right now!

Step 1 - PCAP
First things first, we start with a pcap file containing USB frame.

By inspecting the first USB frames, we can identify in the DEVICE DESCRIPTOR field that the
equipment used in the capture is a Sony MicroVault USB Flash Drive.

Message

Ripple effects in our industry are common. They are in the human body as well, who would
have guessed.

Philip was annoyed of losing eyelashes. Long story short, he got scammed and got a
cream for that, which infected his eyes, and now the Universal Sight Bridge linking his
retina to the brain got impacted and he got an infection. Result? He lost color sighting. I
guess that explain why he didn’t take action when our last pentest report was full of red
everywhere.

Anyway. Here’s the data flux coming from his cones. See if you can find what happened.

After some USB initialization packets, we can remark a lot of USBMS (USB Mass Storage)
packets which is a standard protocol for accessing external disks over USB. Now we have a
clear overview of the situation and we can expect to recover some data transfer via the USB
stick from the capture.

After some research, I find on this site a quite similar situation and some helpful information
about USBMS data. To extract the data transfers through USB we have to focus on the SCSI
and specifically on the Read fields. In those, the LBA field is the logical block address into the
512-byte blocks and the data field is the transferred data.

So I made some changes in the method to fit our situation and go to the practical !🚀

Step 1: make a JSON dump of the specific USBMS packet using Tshark.

Step 2: write a Python script, that reads the JSON dump file, selects the good frames, and
writes the data transfer in an output file.

recover_usbms_data.py

tshark -T json -x -Y usbms -r eyes-infection.pcapng > usbms.json

#!/usr/bin/env python3

from scapy.all import *

import os

import json

dir_path = os.path.dirname(__file__)

usbms_path = os.path.join(dir_path, "usbms.json")

https://www.robertxiao.ca/hacking/sstic-2021/

Once we execute these two steps, we can try to open the image file in FTK Imager, and ...
Magic it works !

#Read each frame from usbms dump

usbms = json.load(open(usbms_path))

frames = {int(frame["_source"]["layers"]["frame"]["frame.number"]):frame for

frame in usbms}

#Create the out image file

file_path = os.path.join(dir_path, "recover_usb.img")

out = open(file_path, 'wb')

for framenr in sorted(frames):

frame = frames[framenr]

#Select specific scsi frames to bypass initialization or useless frames

if "scsi_raw" in frame["_source"]["layers"] and "scsi_sbc.opcode_raw" not

in frame["_source"]["layers"]["scsi"] and "scsi.request_frame" in

frame["_source"]["layers"]["scsi"]:

reqframe = frames[int(frame["_source"]["layers"]["scsi"]

["scsi.request_frame"])]

opcode_str = frame["_source"]["layers"]["scsi"]["scsi_sbc.opcode"]

opcode = int(opcode_str, 16)

if opcode not in (40, 42):

continue

#Extract lba and data of the frame

lba = int(reqframe["_source"]["layers"]["scsi"]

["scsi_sbc.rdwr10.lba"])

reqlen = int(reqframe["_source"]["layers"]["scsi"]

["scsi_sbc.rdwr10.xferlen"])

data = bytes.fromhex(frame["_source"]["layers"]["scsi_raw"][0])

print(framenr, opcode, lba, reqlen, data[:512].hex())

#Write extract data to the output file

out.seek(lba * 512)

out.write(data)

We have the name of the USB volume "EYELIDS-FIX-v.47.4f.41.54.53" and diving
deep inside we find in the root directory a "readme.txt.txt" file with some interesting information
for M. Wellington.

You are sick and tired of the inconvenience with the eyelash mechanism,

install this patch to never be blinded by rogue eyelashes landing in your

visual sensor.

To upgrade the system and prevent eyelashes from getting in your visual

sensors, follow these steps:

1. Assessment:

Figure out what's going on with the eyelash mechanism.

2. Backup:

Save all the important stuff related to visual sensors.

3. Shutdown:

Turn the sensor off safely.

4. Maintenance Mode:

Access the internal systems.

And most importantly a PE exe file named "eyelidsfix.exe" that we can extract for further
analysis.

Okay okay that's the clever method, but what if I told you it's possible to recover the binary just
by performing a binwalk on the pcap file 😅.

But don't be too mad, with the first method you will have more easily some useful information
😉.

Anyway, the "eyelidsfix.exe" file seems like a good way to cure M. Wellington ! Hurry up !

5. Upgrade:

Install the latest software patch for eyelash optimization. This is included

in this upgrade kit.

Navigate to the automatic installation process instructions.

6. Calibration:

Make sure everything fits together smoothly.

7. Reboot and Test:

Turn the sensor back on and check if the upgrade did the trick.

8. Preventive Measures:

Add in some extra steps to prevent future eyelash trouble.

9. User Manual Update:

Let the user know about the fancy new upgrade.

10. Documentation:

Keep records of what you did for future reference.

binwalk --dd=".*" eyes-infection.pcapng

Step 2 - Reverse
First, I execute the program into my sandbox VM but nothing really happened. I see a terminal
pop up and quit instantly.

I try to get the strings of the file with :

Nothing that much interesting either except some strings related to DotNet file.

Thinking back to my old CTFs I try to extract utf16-le strings and finally, I get something !

strings eyelidsfix.exe

strings -e l eyelidsfix.exe

To confirm it I run capa on the exe and I get the following capabilities :

It seems that our "eyelidsfix.exe" is loading some code and we want to extract it. So, I
run binwalk on the exe file and this time I got everything that I needed. 🙃.

capa eyelidsfix.exe

Performing file on them I identify the DotNet one.

binwalk --dd=".*" eyelidsfix.exe

So I open it in dnSpy.

The file is a dll named "eyelidsfix.dll". We can see some interesting functions but first, let's go
into the 'Main' function.

The program is quite simple. We see easily that to get the FLAG, we have to complete this little
challenge.

The two functions 'ComputeSHA512Hash' and 'XORDecode' do nothing but their name, so it's
just basically a function that computes SHA512 hash and a function that
performs xoring operation between a byte array and a key.

The volumeLabel variable reminds me of the USB volume name that we saw earlier in FTK
Imager, so I just transcript the useful part of the script in Python and give "EYELIDS-FIX-
v.47.4f.41.54.53" as volumeLabel entry.

recover_code.py

#!/usr/bin/env python3

import hashlib

def xor_decode(input_bytes, key):

key_bytes = key.encode('utf-8')

decoded_bytes = bytearray(input_bytes)

for i in range(len(input_bytes)):

decoded_bytes[i] ^ key_bytes[i % len(key_bytes)]

return decoded_bytes

def compute_sha512_hash(input_str):

sha512 = hashlib.sha512()

sha512.update(input_str.encode('utf-8'))

return sha512.hexdigest()

def recover_activation_code(volume_label):

input_bytes = [

37, 46, 112, 34, 30, 127, 7, 120, 44, 33, 125, 8, 51, 53, 102, 109,

54, 38, 105, 47, 120, 114, 11, 39, 99, 82, 32, 62, 40, 56, 61, 112,

42, 47, 36, 50

]

key = compute_sha512_hash(volume_label)

decoded_bytes = xor_decode(input_bytes, key)

And Boom !

activation_code = decoded_bytes.decode('utf-8')

return activation_code

if __name__ == "__main__":

volume_label = "EYELIDS-FIX-v.47.4f.41.54.53"

activation_code = recover_activation_code(volume_label)

print(f"Premium firmware activation code: {activation_code}")

Premium firmware activation code: FLAG-M4LICI0US_USB_INF3CT3D_MY_CONES

Message

While our host is still under sleep, I can confirm that transmission of color coding has been
restored. Dopamine secretion will be restored when his favorite color, green, will be
perceived on dashboards.

System repaired.

