Write-Ups Retinal System - USB Drive Eyes
Infection

Author : Choupisson

[F) Message

Ripple effects in our industry are common. They are in the human body as well, who would
have guessed.

Philip was annoyed of losing eyelashes. Long story short, he got scammed and got a
cream for that, which infected his eyes, and now the Universal Sight Bridge linking his
retina to the brain got impacted and he got an infection. Result? He lost color sighting. |
guess that explain why he didn’t take action when our last pentest report was full of red
everywhere.

Anyway. Here’s the data flux coming from his cones. See if you can find what happened.

Humm quite a big problem. Let's fight against M. Wellington's eye infection right now!

Step 1 - PCAP

First things first, we start with a pcap file containing USB frame.

No. Time Source Destination Protocol Length Value
13 2024-01-10 00:49:02,864340 host 1.7.0 UsB 36
14 2024-01-10 00:49:02,864718 1.7.0 host usB 60
15 2024-01-10 00:49:02,870391 host 1.7.0 usB 36
16 2024-01-10 00:49:02,871195 1.7.0 host UsB 28
17 2024-01-10 00:49:02,871270 host 1.7.0 usB 36
18 2024-01-10 00:49:02,871904 1.7.0 host UsB 28
19 2024-01-10 00:49:02,871920 host 1.7.0 USBMS 36
20 2024-01-10 00:49:02,872046 1.7.0 host USBMS 29
21 2024-01-10 00:49:02,872131 host 1.7.2 USBMS 58
22 2024-01-10 00:49:02,872199 1.7.2 host UsB 27
23 2024-01-10 00:49:02,872206 host 1.7.1 usB 27
24 2024-01-10 00:49:02,872395 1.7.1 host USBMS 63
25 2024-01-10 00:49:02,872403 host 1.7.1 UsB 27
26 2024-01-10 00:49:02,872454 1.7.1 host USBMS 40

By inspecting the first USB frames, we can identify in the DEVICE DESCRIPTOR field that the
equipment used in the capture is a Sony MicroVault USB Flash Drive.

> Frame 2: 46 bytes on wire (368 bits), 46 bytes captured (368 bits) on interface \\.\USBPcapl, id @
> USB URB
v DEVICE DESCRIPTOR
bLength: 18
bDescriptorType: ©x@1 (DEVICE)
bcdUSB: ©x0200
bDeviceClass: Device (0x00)
bDeviceSubClass: @
bDeviceProtocol: @ (Use class code info from Interface Descriptors)
bMaxPacketSized: 64
idVendor: Sony Corp. (0x054c)
idProduct: MicroVault Flash Drive (©x0243)
bcdDevice: 0x0200
iManufacturer: 1
iProduct: 2
iSerialNumber: 3

bNumConfigurations: 1

After some USB initialization packets, we can remark a lot of USBMS (USB Mass Storage)
packets which is a standard protocol for accessing external disks over USB. Now we have a
clear overview of the situation and we can expect to recover some data transfer via the USB
stick from the capture.

After some research, | find on this site a quite similar situation and some helpful information
about USBMS data. To extract the data transfers through USB we have to focus on the SCSI
and specifically on the Read fields. In those, the LBA field is the logical block address into the
512-byte blocks and the data field is the transferred data.

So | made some changes in the method to fit our situation and go to the practical ! €’

Step 1: make a JSSON dump of the specific USBMS packet using Tshark.
tshark -T json -x -Y usbms -r eyes—infection.pcapng > usbms. json

Step 2: write a Python script, that reads the JSON dump file, selects the good frames, and
writes the data transfer in an output file.

recover_usbms_data.py

from scapy. import *
import os
import json

dir_path = os.path.dirname(_file__)
usbms_path = os.path.join(dir_path, "usbms.json")

https://www.robertxiao.ca/hacking/sstic-2021/

#Read each frame from usbms dump

usbms = json.load(open(usbms_path))

frames = {int(frame["_source"]["layers"]["frame"]["frame.number"]):frame for
frame in usbms}

#Create the out image file
file_path = os.path.join(dir_path, "recover_usb.img")
out = open(file_path, 'wb')

for framenr in sorted(frames):
frame = frames[framenr]
#Select specific scsi frames to bypass initialization or useless frames
if "scsi_raw" in frame["_source"]["layers"] and "scsi_sbc.opcode_raw" not
in frame["_source"]["layers"]["scsi"] and "scsi.request_frame" in
frame["_source"]["layers"]["scsi"]:
reqframe = frames[int(frame["_source"]["layers"]["scsi"]
["scsi.request_frame"])]
opcode_str = frame["_source"]["layers"]["scsi"]["scsi_sbc.opcode"]
opcode = int(opcode_str, 16)
if opcode not in (40, 42):
continue

#Extract 1lba and data of the frame

lba = int(reqframe["_source"]["layers"]["scsi"]
["scsi_sbc.rdwrl@.lba"])

reqlen = int(reqframe["_source"]["layers"]["scsi"]
["scsi_sbc.rdwrle.xferlen"])

data = bytes.fromhex(frame["_source"]["layers"]["scsi_raw"][0])

print(framenr, opcode, lba, reqlen, data[:512].hex())

#Write extract data to the output file
out.seek(lba * 512)
out.write(data)

Once we execute these two steps, we can try to open the image file in FTK Imager, and ...
Magic it works !

|E\.ri dence Tree

x | [Fite List

E'@ recover_usb img MName Size Type Date Modified
=-T# EYELIDS-FIX-v 47.4F 41.54.53 [NTFS])
' e _ SExtend 1 Directory 07/01/2024 19:58:00
_ System Volume Information 1 Directory 07/01/2024 19:58:05
— 1 Directory 10/01/2024 00:38:12
-1# sBadClus [sattrDef 3 Regular File 07/01/2024 19:58:00
-2 $Exdend [$BadClus 0 RegularFile 07/01/2024 19:58:00
tE ;ﬁ:g:e [sBitmap 120 Regular File 07/01/2024 12:58:00
System Volume Information D SBoot 8 Regular File 07/01/2024 19:58:00
L3 [unallocated space] D 8130 4 NTFS Index All... 10/01/2024 00:42:03
D SLogFile 2480 Regular File 07/01/2024 19:58:00
D SMFT 236 Regular File 07/01/2024 19:58:00
D SMFTMirr 4 Regular File 07/01/2024 19:58:00
D SSecure 1 RegularFile 07/01,/2024 19:58:00
(] STXF_DATA 1 NTFSLogged.. 10/01/2024 00:42:03
D SUpCase 128 Regular File 07/01/2024 19:58:00
D SVolume 0 Regular File 07/01/2024 19:58:00
Q instructions.Ink 2 Regular File 10/01/2024 00:41:54
[readmett.bxt 2 Regular File 07/01/2024 20:19:12
|Eviden(eTree * ||Fi|e List
E'@ recover_usb.img Name Size Type Date Modified
T8 EYELIDS-FI%-v 47 4f 41.54.53 [NTFS] L)
43 [ohan] [0 eyelidsfix.exe 149 Regular File 10/01/2024 00:33:35
C E] placeholder.txt 0 RegularFile 07/01/2024 20:02:27

2 oot]
D

-he $BadClus

) $Extend

18 $Secure

18 SUpCase

A System Volume Information

id) [unallocated space]

We have the name of the USB volume "EYELIDS-FIX-v.47.4f.41.54.53" and diving
deep inside we find in the root directory a "readme.txt.txt" file with some interesting information

for M. Wellington.

You are sick and tired of the inconvenience with the eyelash mechanism,

install this patch to never be blinded by rogue eyelashes landing in your

visual sensor.

To upgrade the system and prevent eyelashes from getting in your visual

sensors, follow these steps:

1. Assessment:
Figure out what's going on with the eyelash mechanism.

2. Backup:
Save all the important stuff related to visual sensors.

3. Shutdown:

Turn the sensor off safely.

4. Maintenance Mode:

Access the internal systems.

5. Upgrade:
Install the latest software patch for eyelash optimization. This is included
in this upgrade Kkit.

Navigate to the automatic installation process instructions.

6. Calibration:

Make sure everything fits together smoothly.

7. Reboot and Test:

Turn the sensor back on and check if the upgrade did the trick.

8. Preventive Measures:

Add in some extra steps to prevent future eyelash trouble.

9. User Manual Update:

Let the user know about the fancy new upgrade.

10. Documentation:

Keep records of what you did for future reference.

And most importantly a PE exe file named "eyelidsfix.exe" that we can extract for further
analysis.

Okay okay that's the clever method, but what if | told you it's possible to recover the binary just
by performing a binwalk on the pcap file &' .

binwalk --dd=".*" eyes—-infection.pcapng

But don't be too mad, with the first method you will have more easily some useful information

-
o« A
-~

Anyway, the "eyelidsfix.exe" file seems like a good way to cure M. Wellington ! Hurry up !

Properly extract data from Execute random binwalk
the USBMS frame like a pro on each file of the CTF

Step 2 - Reverse

First, | execute the program into my sandbox VM but nothing really happened. | see a terminal
pop up and quit instantly.

| try to get the strings of the file with :

strings eyelidsfix.exe

Nothing that much interesting either except some strings related to DotNet file.

Thinking back to my old CTFs | try to extract utf16-le strings and finally, | get something !

strings -e 1 eyelidsfix.exe

eyelidsfix.dll
LegalCopyright
OriginalFilename
eyelidsfix.dll
ProductName
eyelidsfix
ProductVersion
1.0.0

Assembly Version

.0.0

Starting up EYELIDS FIX...

Gathering eyes firmware...

Version compatible with fix.

Shutting down device to apply fix...

Patching eyes firmware...
HKEY_CURRENT_USER\SOFTWARE\Microsoft\ColorFiltering
Active
FilterType
[+] Patch applied successfully.

[*] Your cones have been disabled in this trial version.
[*] To unlock colour vision, please upgrade to the premium firmware.
[X] An error has occured applying the eyes patch.
[-] Attempting to upgrade to premium...
[+] The program is running from an approved media.
[-] Attempting to unlock premium firmware features...
FLAG
[+] The premium firmware have been activated. Activate online to receive instructions on enabling the cone receptors.
[+] Activation code:
[X] Unable to activate the premium firmware. Generated activation code is invalid.
[+] Activation Code:
The program is not running from an approved media.
Shutting down EYELIDS FIX...

To confirm it | run capa on the exe and | get the following capabilities :

capa eyelidsfix.exe

executable/pe/pdb
2 executable/subfile/pe
(7 matches) host-interaction/environment-variable

host-interaction/file-system
host-interaction/log/debug/write-event
(2 matches) host-interaction/process/create
/ value host-interaction/registry
linking/runtime-linking
load-code/pe

It seems that our "eyelidsfix.exe" is loading some code and we want to extract it. So, |
run binwalk on the exe file and this time | got everything that | needed. = .

Going into very painful
extraction of loaded code

Execute random binwalk
on each file of the CTF

binwalk --dd=".*" eyelidsfix.exe

DECIMAL HEXADECIMAL DESCRIPTION

Microsoft executable, portable (PE)

140119 0x22357 XML document, version: "1.0"
143360 0x23000 Microsoft executable, portable (PE)
150391 ox2uUB77 XML document, version: "1.0"

Performing file on them | identify the DotNet one.

_eyelidstix.exe.extracted/0: PE32+ executable
_eyelidsfix.exe.extracted/22357: data

_eyelidsfix.exe.extracted/23000: PE32+ executable (console) x86-64 Mono/.Net assembly, for MS Windows
_eyelidsfix.exe.extracted/2UB77: data

So | open it in dnSpy.
4 O eyelidsfix (1.0.0.0)
4 = eyelidsfix.d
P = PE
p =-B Référence des types
p =-B Références

<Module> @02000001
4%, Eyelashes @02000002

D Bl Type de base et Interfaces
D Bl Types dérivés
© Eyelashes(): @06000004
() : @06000002
@06000003
(byte[], string) : byte[] @06000001

The file is a dll named "eyelidsfix.dll". We can see some interesting functions but first, let's go
into the 'Main' function.

Main() : void

(10@8);
teLine("[
(1008);

,té@@é);

ng keyName CUR N\ SOFTWA \\Col
etValue(keyName, 1, RegistryValueKind.D
alue(keyName, "Fi 3 1, RegistryValueKind.D
("[+] P h i S fu "

eInfo ne IriveInf
(driveInfo. == DriveType.Re

c teLine{"[+] The program is running from an appron
g volumeLabel drivelnfo. H

te[] inputBytes = new byte[]

37,
46,

34,
38,

LF]

a,
33,

8,
51,
53

EE

54,
38,

47,

114,
11,
39,
99,
82,
32,
62,
40,
56,

teLine("[-] Attempting to unlock premium firmware features...");
n(100@) ;
a 2Hash(volumelLabel);
(inputBytes, key);
ing(bytes);

activated. Activate online to receive instructions on enabling the cone recepto

media.");

wn EYELIDS -TF

The program is quite simple. We see easily that to get the FLAG, we have to complete this little
challenge.

key = Eyelashes. (volumelabel);
[] bytes = Eyelashes. (inputBytes, key);

@string = Encoding. .GetString(bytes);
(@string.StartsWith("FLAG"))

The two functions 'ComputeSHAS512Hash' and 'XORDecode' do nothing but their name, so it's
just basically a function that computes SHA512 hash and a function that
performs xoring operation between a byte array and a key.

The volumelLabel variable reminds me of the USB volume name that we saw earlier in FTK
Imager, so | just transcript the useful part of the script in Python and give "EYELIDS-FIX-
v.47.4f.41.54.53" as volumelLabel entry.

recover_code.py

import hashlib

def (input_bytes, key):
key_bytes = key.encode('utf-8')
decoded_bytes = (input_bytes)
for i in (Len(Cinput_bytes)):
decoded_bytes[i] "= key_bytes[i % (key_bytes)]
return decoded_bytes

def (input_str):
sha512 = hashlib.sha512()
sha512.update(input_str.encode('utf-8'))
return sha512.hexdigest()

def (volume_label):
input_bytes = [
37, 46, 112, 34, 30, 127, 7, 120, u4, 33, 125, 8, 51, 53, 102, 109,
54, 38, 105, 47, 120, 114, 11, 39, 99, 82, 32, 62, U0, 56, 61, 112,
u2, 47, 36, 50

key = compute_sha512_hash(volume_label)
decoded_bytes = xor_decode(input_bytes, key)

activation_code = decoded_bytes.decode('utf-8')
return activation_code

if __name__ == "_main__":
volume_label = "EYELIDS-FIX-v.47.4f.41.54.53"
activation_code = recover_activation_code(volume_label)
print(f"Premium firmware activation code: {activation_code}")

And Boom !

Premium firmware activation code: FLAG-MU4LICIOUS_USB_INF3CT3D_MY_CONES

Message

While our host is still under sleep, | can confirm that transmission of color coding has been
restored. Dopamine secretion will be restored when his favorite color, green, will be
perceived on dashboards.

System repaired.

